A New Approach to Abstract Syntax Involving Binders

نویسندگان

  • Murdoch James Gabbay
  • Andrew M. Pitts
چکیده

The Fraenkel-Mostowski permutation model of set theory with atoms (FM-sets) can serve as the semantic basis of meta-logics for specifying and reasoning about formal systems involving name binding, -conversion, capture avoiding substitution, and so on. We show that in FM-set theory one can express statements quantifying over ‘fresh’ names and we use this to give a novel set-theoretic interpretation of name abstraction. Inductively defined FM-sets involving this name-abstraction set former (together with cartesian product and disjoint union) can correctly encode object-level syntax modulo -conversion. In this way, the standard theory of algebraic data types can be extended to encompass signatures involving binding operators. In particular, there is an associated notion of structural recursion for defining syntax-manipulating functions (such as capture avoiding substitution, set of free variables, etc) and a notion of proof by structural induction, both of which remain pleasingly close to informal practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representing names with variables in nominal abstract syntax

We describe a new approach to nominal abstract syntax where object-language names are represented using variables in the meta-language, as opposed to concrete atoms. As well as providing additional flexibility through the ability to perform aliasing between bound and free names, this approach more closely models informal practice in the specification of inductively-defined relations. We present...

متن کامل

Implementing Reflection in Nuprl

Syntax : Syntax represented as data, similar to concrete syntax, except that irrelevant features are abstracted away. For this work, this is exactly like concrete syntax modulo alpha-equality. (Note that the “abstract” here is unrelated to functions, it is only to distinguished the represented syntax from the actual syntax.) Higher Order Abstract Syntax, HOAS : Similar to abstract syntax, excep...

متن کامل

Plug and Play the Theory of Contexts in Higher-Order Abstract Syntax

We illustrate the pragmatic aspects of the Theory of Contexts, recently proposed as a general approach for reasoning on languages with binders in Higher-Order Abstract Syntax, through two working examples: λ-calculus and Abadi and Cardelli’s impς-calculus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999